Estudio en deep learning predice pronóstico en tratamiento de hemorragia intracraneal
Estudio en deep learning predice pronóstico en tratamiento de hemorragia intracraneal
La hemorragia intracraneal es una afección muy común que debe diagnosticarse y tratarse con rapidez. Sin embargo, todavía falta consenso entre la comunidad médica respecto a su tratamiento debido, en cierta medida, a la incertidumbre en la evolución del paciente tras la hemorragia. Por ello, investigadores del Instituto de Física participan en un proyecto que, a partir del estudio de 262 pacientes, ha desarrollado un modelo de aprendizaje profundo (deep learning) para predecir el buen o mal pronóstico de una hemorragia intracraneal.
“Cuando un paciente tiene una hemorragia intracraneal es difícil saber si va a evolucionar bien o mal, por tanto, es complicado tomar decisiones en cuanto a darle un tratamiento más intervencionista o más agresivo”, afirma la médica radióloga del Hospital Universitario de Navarra Amaia Pérez del Barrio, cuya tesis doctoral dio como resultado este estudio. Publicado en Journal of Neuroimaging y codirigido por el doctor de la Universidad de Oviedo José Antonio Vega y por la investigadora del IFCA Lara Lloret, el estudio busca aportar una mayor certidumbre en el tratamiento mediante la inteligencia artificial, el aprendizaje profundo y una infraestructura adecuada: “No puedes hacer este trabajo de imagen médica con tu ordenador personal, hay que utilizar las unidades gráficas de procesamiento, o CPUs, para crear estas redes neuronales profundas”, explica Lloret.
Lo novedoso respecto a los modelos de predicción existentes, es el desarrollo de un sistema de aprendizaje profundo que permite predecir el pronóstico de la enfermedad, es decir, si el paciente evolucionará favorablemente o no.
Más detalles aquí.